An application of the PROMETHEE II method for the comparison of energy requalification strategies to design Post-Carbon Cities

Author:

Bertoncini Martina1,Boggio Adele1,Dell'Anna Federico2,Becchio Cristina3,Bottero Marta2

Affiliation:

1. Politecnico di Torino, Corso Duca degli Abruzzi 24, 10125, Turin (Italy)

2. Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Viale Mattioli 39, 10125, Turin (Italy)

3. TEBE-IEEM Research Group, Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin (Italy)

Abstract

<abstract> <p>A resilient, diversified, and efficient energy system, comprising multiple energy carriers and high-efficiency infrastructure, is the way to decarbonise the European economy in line with the Paris Agreement, the UN 2030 Agenda for Sustainable Development, and the various recovery plans after the COVID-19 pandemic period. To achieve these goals, a key role is played by the private construction sector, which can reduce economic and environmental impacts and accelerate the green transition. Nevertheless, while traditionally decision-making problems in large urban transformations were supported by economic assessment based on Life Cycle Thinking and Cost-Benefit Analysis (CBA) approaches, these are now obsolete. Indeed, the sustainable neighbourhood paradigm requires the assessment of different aspects, considering both economic and extra-economic criteria, as well as different points of view, involving all stakeholders. In this context, the paper proposes a multi-stage assessment procedure that first investigates the energy performance, through a dynamic simulation model, and then the socio-economic performance of regeneration operations at the neighbourhood scale, through a Multi-Criteria Decision Analysis (MCDA). The model based on the proposed Preference Ranking Organisation Method for Enrichment Evaluations II (PROMETHEE II) aims to support local decision makers (DMs) in choosing which retrofit operations to implement and finance. The methodology was applied to a real-world case study in Turin (Italy), where various sustainable measures were ranked using multiple criteria to determine the best transformation scenario.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference72 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3