Effect of piston geometry design and spark plug position on the engine performance and emission characteristics

Author:

Tran Quoc Dang1,Nguyen Thanh Nhu2,Duy Vinh Nguyen3

Affiliation:

1. School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam

2. Faculty of Automotive Engineering Technology, Dai Nam University

3. Faculty of Vehicle and Energy Engineering, Phenikaa University

Abstract

<abstract> <p>This paper investigates the influence of piston geometry design and spark plug position on the engine performance and emission characteristics at a range of speeds from 1200 rpm to 2200 rpm. Accordingly, the parameters of the indentation depth, the spark plug position, the location of the recess, and the engine's compression ratio are changed and evaluated. The concave center depth improved the mixture of air and fuel, increased power, and reduced fuel consumption. The power can be improved by up to 3% when the piston top recess is 25 mm. In addition, within a limited range, the combustion process and the engine's power and emission characteristics are enhanced when the engine's compression ratio rises. Increasing the depth of the depression on the top of the piston improves fluid flow in the cylinder, resulting in increased power, fuel efficiency, and emissions; however, the improvement between the indentations remains unclear.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3