Cocycle superrigidity from higher rank lattices to $ {{\rm{Out}}}{(F_N)} $

Author:

Guirardel Vincent1,Horbez Camille2,Lécureux Jean2

Affiliation:

1. Univ Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France

2. Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d'Orsay, 91405, Orsay, France

Abstract

<p style='text-indent:20px;'>We prove a rigidity result for cocycles from higher rank lattices to <inline-formula><tex-math id="M2">\begin{document}$ \mathrm{Out}(F_N) $\end{document}</tex-math></inline-formula> and more generally to the outer automorphism group of a torsion-free hyperbolic group. More precisely, let <inline-formula><tex-math id="M3">\begin{document}$ G $\end{document}</tex-math></inline-formula> be either a product of connected higher rank simple algebraic groups over local fields, or a lattice in such a product. Let <inline-formula><tex-math id="M4">\begin{document}$ G \curvearrowright X $\end{document}</tex-math></inline-formula> be an ergodic measure-preserving action on a standard probability space, and let <inline-formula><tex-math id="M5">\begin{document}$ H $\end{document}</tex-math></inline-formula> be a torsion-free hyperbolic group. We prove that every Borel cocycle <inline-formula><tex-math id="M6">\begin{document}$ G\times X\to \mathrm{Out}(H) $\end{document}</tex-math></inline-formula> is cohomologous to a cocycle with values in a finite subgroup of <inline-formula><tex-math id="M7">\begin{document}$ \mathrm{Out}(H) $\end{document}</tex-math></inline-formula>. This provides a dynamical version of theorems of Farb–Kaimanovich–Masur and Bridson–Wade asserting that every homomorphism from <inline-formula><tex-math id="M8">\begin{document}$ G $\end{document}</tex-math></inline-formula> to either the mapping class group of a finite-type surface or the outer automorphism group of a free group, has finite image.</p><p style='text-indent:20px;'>The main new geometric tool is a barycenter map that associates to every triple of points in the boundary of the (relative) free factor graph a finite set of (relative) free splittings.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Algebra and Number Theory,Analysis,Applied Mathematics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3