Abstract
<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ a < b $\end{document}</tex-math></inline-formula> be multiplicatively independent integers, both at least <inline-formula><tex-math id="M2">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id="M3">\begin{document}$ A,B $\end{document}</tex-math></inline-formula> be closed subsets of <inline-formula><tex-math id="M4">\begin{document}$ [0,1] $\end{document}</tex-math></inline-formula> that are forward invariant under multiplication by <inline-formula><tex-math id="M5">\begin{document}$ a $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ b $\end{document}</tex-math></inline-formula> respectively, and let <inline-formula><tex-math id="M7">\begin{document}$ C : = A\times B $\end{document}</tex-math></inline-formula>. An old conjecture of Furstenberg asserted that any planar line <inline-formula><tex-math id="M8">\begin{document}$ L $\end{document}</tex-math></inline-formula> not parallel to either axis must intersect <inline-formula><tex-math id="M9">\begin{document}$ C $\end{document}</tex-math></inline-formula> in Hausdorff dimension at most <inline-formula><tex-math id="M10">\begin{document}$ \max\{\dim C,1\} - 1 $\end{document}</tex-math></inline-formula>. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Algebra and Number Theory,Analysis,Applied Mathematics,Algebra and Number Theory,Analysis
Reference8 articles.
1. M. Einsiedler, E. Lindenstrauss and T. Ward, Entropy in Ergodic Theory and Topological Dynamics., Book draft, available online at https://tbward0.wixsite.com/books/entropy.
2. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 3rd edition, John Wiley & Sons, Ltd., Chichester, 2014.
3. H. Furstenberg.Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.
4. H. Furstenberg, Intersections of Cantor sets and transversality of semigroups, in Problems in Analysis (Sympos. Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), Princeton Univ. Press, Princeton, N.J., 1970, 41–59.
5. M. Hochman, Lectures on fractal geometry and dynamics., Unpublished lecture notes, available online at http://math.huji.ac.il/ mhochman/courses/fractals-2012/course-notes.june-26.pdf.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献