2019 Southeast Asia Transboundary Haze and its Influence on Particulate Matter Variations: A Case Study in Kota Kinabalu, Sabah

Author:

Payus Carolyn12,Anuar Siti Irbah12,Chee Fuei Pien1,Rumaling Muhammad Izzuddin1,Soegianto Agoes3

Affiliation:

1. Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia

2. Natural Disasters Research Centre, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia

3. Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

Abstract

<abstract><p>In 2019, Malaysia faced a deterioration of air quality due to transboundary haze, which brought negative implications, especially for public health. In light of the above scenario, continuous particulate matter (PM<sub>10</sub>, PM<sub>2.5</sub> and PM<sub>1</sub>) and meteorological parameters amid the haze period were taken to unravel the influence of haze on particulate matter variations and to investigate the association between particulate matter concentrations with meteorological parameters and fire hotspots in Kota Kinabalu, where it is rarely studied. Particulate matter and the meteorological parameters were monitored during the haze season, continuously from 21 August–30 September 2019, using AirMate, a ground-based air monitoring equipment. Air mass backward trajectories were simulated using the HYSPLIT Model, and fire hotspot data was obtained from the Greenpeace Global Fire Dashboard. The results showed increasing particulate matter concentrations during the haze period, with PM<sub>2.5</sub> exceeding the New Ambient Air Quality Standards (2020) on multiple days. For meteorological parameters, all parameters showed a significant weak positive relationship with respective particulate matter. However, the correlation between particulate matter and fire hotspots in Indonesia showed a moderate positive relationship. The backward trajectories simulated indicated the influence of south-westerly winds in transporting the pollutants from fire hotspots in the Indonesia region. Thus, we provide beneficial information about the impacted area during the 2019 transboundary haze episode, where the interactions between the particulate matter variations and the parameters studied were unraveled.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3