Enhanced BBO technique used to solving EED problems in electrical power systems

Author:

Marouani Ismail

Abstract

<p>This paper proposes an improved biogeography-based optimization (BBO) algorithm to effectively solve the economic and environmental dispatch (EED) problem in power systems. The EED problem is a crucial optimization challenge in power system operations, which aims to balance the minimization of operating costs and environmental impacts. Various metaheuristic algorithms have been explored in the literature to address this problem, including the original BBO algorithm. However, the complex constraints and non-linearities associated with the EED problem, such as ramp-rate limits (RRLs), prohibited operating Zones (POZs), and valve point loading effects (VPLEs), pose significant challenges for the original BBO approach. The EED problem is subject to a range of practical constraints that significantly impact the optimal dispatch solution. Addressing these constraints accurately and efficiently is essential for realistic power system optimization. In this work, we present an enhanced BBO algorithm that incorporates several innovative features to improve its performance and overcome the limitations of the original approach. The key enhancement is the incorporation of the Cauchy distribution as the mutation operator, which helps the algorithm to better explore the search space and escape local optima. Comprehensive experiments were conducted on standard 10-bus and 40-bus test systems to evaluate the effectiveness of the proposed algorithm. The results demonstrate that the improved BBO algorithm outperforms other state-of-the-art optimization techniques in terms of convergence speed, solution quality, and robustness. Specifically, the enhanced BBO algorithm achieved a 12% reduction in operating costs and a 15% decrease in emissions compared to the original BBO method. The proposed improved BBO algorithm provides a promising solution for effectively addressing the EED problem in power systems, considering the practical constraints and non-linearities that are commonly encountered in real-world scenarios.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3