Optimization of liquefaction process based on global meta-analysis and machine learning approach: Effect of process conditions and raw material selection on remaining ratio and bioavailability of heavy metals in biochar

Author:

Ma Li12,Zhan Likun12,Wu Qingdan12,Li Longcheng3,Zheng Xiaochen12,Xiao Zhihua12,Zou Jingchen12

Affiliation:

1. College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China

2. Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China

3. Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China

Abstract

<abstract> <p>Although liquefaction technology has been extensively applied, plenty of biomass remains tainted with heavy metals (HMs). A meta-analysis of literature published from 2010 to 2023 was conducted to investigate the effects of liquefaction conditions and biomass characteristics on the remaining ratio and chemical speciation of HMs in biochar, aiming to achieve harmless treatment of biomass contaminated with HMs. The results showed that a liquefaction time of 1–3 h led to the largest HMs remaining ratio in biochar, with the mean ranging from 84.09% to 92.76%, compared with liquefaction times of less than 1 h and more than 3 h. Organic and acidic solvents liquefied biochar exhibited the greatest and lowest HMs remaining ratio. The effect of liquefaction temperature on HMs remaining ratio was not significant. The C, H, O, volatile matter, and fixed carbon contents of biomass were negatively correlated with the HMs remaining ratio, and N, S, and ash were positively correlated. In addition, liquefaction significantly transformed the HMs in biochar from bioavailable fractions (F1 and F2) to stable fractions (F3) (<italic>P</italic> &lt; 0.05) when the temperature was increased to 280–330 ℃, with a liquefaction time of 1–3 h, and organic solvent as the liquefaction solvent. N and ash in biomass were positively correlated with the residue state (F4) of HMs in biochar and negatively correlated with F1 or F2, while H, O, fixed carbon, and volatile matter were negatively correlated with F4 but positively correlated with F3. Machine learning results showed that the contribution of biomass characteristics to HMs remaining ratio was higher than that of liquefaction factor. The most prominent contribution to the chemical speciation changes of HMs was the characteristics of HMs themselves, followed by ash content in biomass, liquefaction time, and C content. The findings of this meta-analysis contribute to factor selection, modification, and application of liquefied biomass to reducing risks.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3