Optimizing the synthesis conditions of aerogels based on cellulose fiber extracted from rambutan peel using response surface methodology

Author:

Trong Nguyen Trinh12,Le Tan Phu Huynh1,Ngoc Dat Nguyen1,Huy Ba Le2,Thanh Dat Tran3,Van Nam Thai4

Affiliation:

1. HUTECH Institute of Applied Sciences, HUTECH University, Ho Chi Minh City, Vietnam; tt.nguyen@hutech.edu.vn, phucleotoanhuynh@gmail.com, ngocdat200199@gmail.com

2. Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City 70000, Vietnam; 6009220001@huit.edu.vn, lhuyba@gmail.com

3. HCMC Industry and Trade College (HITC), Vietnam; dattranthanh9@gmail.com

4. Institute of Postgraduate Studies, HUTECH University, Ho Chi Minh City, Vietnam; tv.nam@hutech.edu.vn

Abstract

<p>A cellulose-based aerogel has been synthesized from rambutan peel to mitigate environmental pollution caused by agricultural waste, rendering it an eco-friendly material with potential applications in oil spill remediation as well as enhancing the value of this fruit. The objective of this study was to extract cellulose from rambutan peel using chlorination and alkalization processes, followed by optimizing the synthesis conditions of cellulose-based aerogels from rambutan peel through experimental designs to improve oil removal efficiency. In this research, cellulose-based aerogel material was synthesized using the sol-gel method, utilizing waste from rambutan peel as the substrate and polyvinyl alcohol as the cross-linking agent, followed by freeze-drying. A central composite design with 30 different experimental setups was employed to investigate the influence of cellulose content (1.0–2.0%), cross-linking agent (polyvinyl alcohol) content (0.1–0.3%), ultrasonic time (5–15 min), and ultrasonic power (100–300W) on the oil adsorption capacity (g/g) of cellulose-based aerogels from rambutan peel. The research findings demonstrated successful extraction of cellulose from rambutan peel through chlorination, followed by softening with 17.5% (w/v) sodium hydroxide. Response surface plots indicated that maximizing the cellulose component could lead to a maximum diesel oil adsorption capacity of up to 52.301 g/g. Cellulose-based aerogel exhibits ultra-lightweight properties (0.027±0.002 g/cm<sup>3</sup>), high porosity (97.88±0.19), hydrophobicity (water contact angle of 152.7°), and superior oil selective adsorption compared to several commercially available materials in the market, demonstrating promising potential for application in treating oil-contaminated water in real-world scenarios.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3