Endolithic microbes may alter the carbon profile of concrete

Author:

Brown Jordan12,Chen Corona34,Carr Deborah1

Affiliation:

1. Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA

2. Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA

3. The University of Chicago Laboratory School, Chicago, IL, 60637, USA

4. School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Abstract

<abstract> <p>There is great interest to understand and reduce the massive carbon footprint of the concrete industry. Recent descriptions of microbes incidentally living inside concrete materials ("concrete endoliths") raised questions about how much carbon is either stored in or released from concrete by these microbes. We generated preliminary global estimates of how much organic carbon is stored within the living biomass of concrete endoliths (biomass-carbon) and much CO<sub>2</sub> is released from respiring concrete endoliths. Between 2020–2022, we collected widely varying samples of Portland cement-based concrete from Lubbock, Texas. After quantifying endolith DNA from 25 concrete samples and estimating the current global mass of concrete, we calculated that the global concrete endolith biomass-carbon as low as 5191.9 metric tons (suggesting that endoliths are a negligible part of concrete's carbon profile) or as high as 1141542.3 tons (suggesting that concrete endoliths are a pool of carbon that could equal or offset some smaller sources of concrete-related carbon emissions). Additionally, we incubated concrete samples in air-tight microcosms and measured changes in the CO<sub>2</sub> concentrations within those microcosms. Two out of the ten analyzed samples emitted small amounts of CO<sub>2</sub> due to the endoliths. Thus, "concrete respiration" is possible, at least from concrete materials with abundant endolithic microbes. However, the remaining samples showed no reliable respiration signals, indicating that concrete structures often do not harbor enough metabolically active endoliths to cause CO<sub>2</sub> emissions. These results are preliminary but show that endoliths may alter the carbon dynamics of solid concrete and, thus, the carbon footprint of the concrete industry.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3