Global stability analysis of a COVID-19 epidemic model with incubation delay

Author:

Lolika Paride O.1,Helikumi Mlyashimbi2

Affiliation:

1. University of Juba, Department of Mathematics, P.O. Box 82 Juba, Central Equatoria, South Sudan

2. Mbeya University of Science and Technology, Department of Mathematics and Statistics, College of Science and Technical Education, P.O. Box 131, Mbeya, Tanzania

Abstract

<abstract><p>In this paper, we propose, analyze and simulate a time delay differential equation to investigate the transmission and spread of Coronavirus disease (COVID-19). The basic reproduction number of the model is determined and qualitatively used to investigate the global stability of the model's steady states. We use numerical simulations to support the analytical results in the study. From the simulation results, we note that whenever the basic reproduction number is greater than unity, the model solutions will be associated with periodic oscillations for a considerable time scale from the start before attaining stability. This suggests that the inclusion of the time delay factor destabilizes the endemic equilibrium point leading to periodic solutions that arise due to Hopf bifurcations for a certain time frame.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference27 articles.

1. F. Ndarou, I. Area, J. J. Nieto, D. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos, Solitons and Fractals, 135 (2020), 109846. https://doi.org/10.1016/j.chaos.2020.109846

2. CDC gov. Coronavirus Disease 2019 (COVID-19), 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/.

3. WHO: Statement on the second meeting of the international health regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-ncov), 2020. Available from: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov).

4. A. Elsonbaty, Z. Sabir, R. Ramaswamy, W. Adel, Dynamical analysis of a novel discrete fractional sitrs model for COVID-19, Fractals, 29 (2021), 2140035. https://doi.org/10.1142/S0218348X21400351

5. N. Ahmed, A. Elsonbaty, A. Raza, M. Rafiq, W. Adel, Numerical simulation and stability analysis of a novel reaction diffusion COVID-19 model, Nonlinear Dyn., 106 (2021), 1293–1310. https://doi.org/10.1007/s11071-021-06623-9

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3