Author:
He Ling-Bing,Ji Jie,Shao Ling-Xuan
Abstract
<p style='text-indent:20px;'>As a first step towards the general global-in-time stability for the Boltzmann equation with soft potentials, in the present work, we prove the quantitative lower bounds for the equation under the following two assumptions, which stem from the available energy estimates, i.e. (ⅰ). the hydrodynamic quantities (local mass, local energy, and local entropy density) are bounded (from below or from above) uniformly in time, (ⅱ). the Sobolev regularity for the solution grows tempered with time.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Modeling and Simulation,Numerical Analysis
Reference16 articles.
1. R. Alexandre, L. Desvillettes, C. Villani, B. Wennberg.Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152 (2000), 327-355.
2. M. Briant.Instantaneous filling of the vacuum for the full Boltzmann equation in convex domains, Arch. Ration. Mech. Anal., 218 (2015), 985-1041.
3. M. Briant.Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions, Kinet. Relat. Models, 8 (2015), 281-308.
4. T. Carleman.Sur la théorie de l'équation intégrodifférentielle de Boltzmann, Arch. Math., 60 (1933), 91-146.
5. T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz, Publ. Sci. Inst. Mittag-Leffler., 2. Uppsala: Almqvist & Wiksell, 1957.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献