Author:
Griffin-Pickering Megan,Iacobelli Mikaela
Abstract
<p style='text-indent:20px;'>Systems of Vlasov-Poisson type are kinetic models describing dilute plasma. The structure of the model differs according to whether it describes the electrons or positively charged ions in the plasma. In contrast to the electron case, where the well-posedness theory for Vlasov-Poisson systems is well established, the well-posedness theory for ion models has been investigated more recently. In this article, we prove global well-posedness for two Vlasov-Poisson systems for ions, posed on the whole three-dimensional Euclidean space <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^3 $\end{document}</tex-math></inline-formula>, under minimal assumptions on the initial data and the confining potential.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Modeling and Simulation,Numerical Analysis
Reference18 articles.
1. C. Bardos, F. Golse, T. T. Nguyen, R. Sentis.The Maxwell-Boltzmann approximation for ion kinetic modeling, Phys. D, 376/377 (2018), 94-107.
2. J. Batt, G. Rein.Global classical solutions of the periodic Vlasov-Poisson system in three dimensions, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 411-416.
3. G. Bonhomme, T. Pierre, G. Leclert, J. Trulsen.Ion phase space vortices in ion beam-plasma systems and their relation with the ion acoustic instability: Numerical and experimental results, Plasma Physics and Controlled Fusion, 33 (1991), 507-520.
4. F. Bouchut.Global weak solution of the Vlasov-Poisson system for small electrons mass, Comm. Partial Differential Equations, 16 (1991), 1337-1365.
5. M. Griffin-Pickering and M. Iacobelli, Global well-posedness for the Vlasov-Poisson system with massless electrons in the 3-dimensional torus, preprint, to appear on Comm. Partial Differential Equations, arXiv: 1810.06928.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献