Fecal sampling protocol to assess bumble bee health in conservation research

Author:

Tissier Mathilde L.ORCID,Blair Cole,MacKell Sarah,Adler Lynn S.ORCID,MacIvor J. ScottORCID,Bergeron PatrickORCID,Callaghan Carolyn,Labrie Geneviève,Colla SheilaORCID,Fournier ValérieORCID

Abstract

An increasing number of wild bee species are declining or threatened with extinction worldwide. Decline has been proposed to be caused by a combination of threats, including increasing wild bee disease prevalence and pathogen spillover from managed bees that can reduce health of wild bees. Most approaches aiming at characterizing bee health, however, require sacrificing tens to hundreds of individual bees per site or species, with reports of several thousand individuals collected per study. Considering the widespread need to assess bee health, this sampling approach is not sustainable, especially for endangered populations or species. Here, we present a non-destructive protocol to collect bumble bee faeces and assess parasite loads of wild-caught individuals. The standard protocol consists of net-capturing individual bumble bees and placing them in a 10 cm (diameter) petri dish to collect faeces. This fecal screening approach is frequently used in laboratory settings, but much less in the field, which can impair conservation research. When placing bumble bees in a previously refrigerated cooler, we successfully collected faeces for 86% individuals, while the standard protocol, as used in laboratory settings, yielded 76% success in collecting faeces. We also identified cells and spores of two common gut parasites Crithidia spp. and Vairimorpha spp. in faecal samples. The faecal sampling presented here opens future avenues to assess bee pathogen loads using molecular techniques, while collected faeces could also be used to assess bee health more broadly, including bee microbiota and bee diet.

Publisher

International Commission for Plant Pollinator Relations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3