Natural selection by pollinators on floral attractive and defensive traits did not translate into selection via fruits in common milkweed

Author:

García YedraORCID,Dow BenjaminORCID,Vézina LucieORCID,Parachnowitsch Amy

Abstract

Considering both pollinator and herbivore pressures on plant reproductive and defensive traits is key to understanding patterns of selection for plants. However, phenotypic selection studies connecting floral traits and plant defenses with pollinator activity and herbivore damage remain rare. We used the common milkweed, Asclepias syriaca (Apocynaceae), to study phenotypic selection on attractive and defensive traits, and nectar rewards. We measured herbivore (leaf damage) and pollinator activity (pollinia movement) and quantified selection via female (pollinia insertions and fruit number) and male fitness (pollinia removals). We found selection to increase plant and inflorescence size and to decrease floral size (i.e. petal width) via female fitness. We also detected selection to increase floral but not leaf latex. The lack of selection on leaf latex was congruent with the low herbivory observed, however we also did not observe florivory in the population that would explain the advantage of more floral latex. Interestingly, we found selection on attractive traits differed via pollinia insertions and fruits initiated, suggesting that something other than pollinators was driving selection via fruit production. In contrast to female fitness, we did not find selection on any trait through male fitness, suggesting no sexual conflicting selection, at least through these proxies. Our findings reinforce the importance of the direct assessment of pollinator pressures in phenotypic selection studies before assuming pollinators as drivers of floral evolution by natural selection. Further work in southern populations closer to the centre of the species range, where herbivory and plant defense investment are higher, may help elucidate selection on attractive and defensive traits.

Publisher

International Commission for Plant Pollinator Relations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3