Affiliation:
1. 1Pirelli Pneumatici Spa, V.le Sarca 222, 20126 Milano, Italy
2. 2Politecnico di Milano, P.za Leonardo Da Vinci 32, 20133 Milano, Italy
Abstract
Abstract
A new 3D mathematical-physical tire model is presented. This model considers not only the handling behavior of the tire but also its comfort characteristics, i.e., the dynamic properties in the lateral and the vertical planes. This model can be divided into two parts, the structural model and the contact area model. The structural parameters are identified by comparison with frequency responses of a 3D finite element model of the tire, whereas the contact parameters are directly calculated with a finite element model of the tread pattern. The 3D physical model allows predicting both steady state and transient behavior of the tire without the need of any experimental tests on the tire. The steady state analysis allows obtaining the friction circle diagram, i.e., the plot of the lateral force against the longitudinal force for different slip angles and for longitudinal slip, and the Gough plot, i.e., the diagram of the self-aligning torque versus the lateral force. The transient analysis allows obtaining the dynamic behavior of the tire for any maneuver given to the wheel. Among its outputs there are the relaxation length and the dynamic forces and torque transmitted to the suspension of the vehicle. Combining the tire model with the vehicle model it is possible to perform any kind of maneuver such as overtaking, changing of lane and steering pad at growing speed with or without braking, or accelerating. Therefore the 3D tire model can be seen as a powerful tool to optimize the tire characteristics through a sensitivity analysis performed with tire and vehicle models linked to each other without the need of building prototypes. Some preliminary comparisons with experimental data have been carried out.
Subject
Polymers and Plastics,Mechanics of Materials,Automotive Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献