Analysis of the Contact Deformation of a Radial Tire with Camber Angle

Author:

Kagami S.1,Akasaka T.1,Shiobara H.1,Hasegawa A.1

Affiliation:

1. 1Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, Japan

Abstract

Abstract The contact deformation of a radial tire with a camber angle, has been an important problem closely related to the cornering characteristics of radial tires. The analysis of this problem has been considered to be so difficult mathematically in describing the asymmetric deformation of a radial tire contacting with the roadway, that few papers have been published. In this paper, we present an analytical approach to this problem by using a spring bedded ring model consisting of sidewall spring systems in the radial, the lateral, and the circumferential directions and a spring bed of the tread rubber, together with a ring strip of the composite belt. Analytical solutions for each belt deformation in the contact and the contact-free regions are connected by appropriate boundary conditions at both ends. Galerkin's method is used for solving the additional deflection function defined in the contact region. This function plays an important role in determining the contact pressure distribution. Numerical calculations and experiments are conducted for a radial tire of 175SR14. Good agreement between the predicted and the measured results was obtained for two dimensional contact pressure distribution and the camber thrust characterized by the camber angle.

Publisher

The Tire Society

Subject

Polymers and Plastics,Mechanics of Materials,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contact Properties of Tires;Advanced Tire Mechanics;2019

2. Spring Properties of Tires;Advanced Tire Mechanics;2019

3. Conceptual Design of Road Vehicles Related to Dynamics;Road and Off-Road Vehicle System Dynamics Handbook;2013-10-23

4. FEA and Testing Studies on Static Camber Performance of the Radial Tire;Journal of Reinforced Plastics and Composites;2007-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3