Deformation and Fracture of Rubber under Tensile Impact Loading

Author:

Bekar I.1,Fatt M. S. H.1,Padovan J.2

Affiliation:

1. 1Department of Mechanical Engineering, The University of Akron

2. 2Goodyear Tire and Rubber Company, Akron, OH 44309-3531

Abstract

Abstract An impact experiment is designed to obtain the deformation and fracture characteristics of SBR specimens under tensile impact loading. The experimental apparatus is capable of achieving very large strains (about 300%) and high strain rates (between 10 and 1000 s−1) in the specimen. Dynamic stress-strain curves reveal that SBR goes through several phases of deformation and fracture as the strain rate increases in the specimen. In the first phase, the initial modulus, yield stress, tensile strength, and fracture strain increase, while the final modulus remains fairly constant with increasing strain rate. Increases in the initial modulus, tensile strength, and strain at fracture with increasing strain rate are due to a lack of stress relaxation in constituents that have longer relaxation times than the load duration. Local scale relaxation times are shorter than the load duration in this phase so that the final modulus is almost insensitive to strain rate. In the second phase, the initial modulus and the yield stress remain roughly constant while the final modulus increases with increasing strain rate. The tensile strength also increases, but the fracture strain decreases as the strain rate increases. Increases in the final modulus and tensile strength are due to a lack of relaxation on a local scale. The tensile fracture strain decreases because convolutions do not have sufficient time to slip completely. In the third phase, all stress-strain curves follow a master curve, but both the tensile strength and fracture strain decrease with increasing strain rate. The decrease in tensile strength as the strain rate increases could be due to stress concentration at the tip of microcracks within the SBR.

Publisher

The Tire Society

Subject

Polymers and Plastics,Mechanics of Materials,Automotive Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3