Dynamic Fracture of Natural Rubber

Author:

Al-Quraishi Ali A.1,Hoo Fatt Michelle S.2

Affiliation:

1. 1Graduate Student, Department of Mechanical Engineering, The University of Akron, Akron, Ohio 44325-3903, USA.

2. 2Associate Professor and Corresponding Author, Department of Mechanical Engineering, The University of Akron, Akron, Ohio 44325-3903, USA. Telephone: (330) 972-6308; fax: (330) 972-6027; e-mail: hoofatt@uakron.edu

Abstract

Abstract This paper illustrates how the fracture energy of a tensile strip made of unfilled and 25 phr carbon black-filled natural rubber varies with far-field strain rate in the range 0.01–71 s−1. Quasistatic and dynamic fracture tests were performed at room temperature with an electromechanical INSTRON machine, a servo-hydraulic MTS machine, and Charpy tensile apparatus, respectively. It was found that the fracture energy of the unfilled natural rubber did not vary significantly over the range of sample strain rate, but there was significant variation in the fracture energy of the 25 phr carbon black-filled natural rubber from 0.01 to 71 s−1 sample strain rate. The fracture energy of the 25 phr carbon black-filled natural rubber at a sample strain rate of 0.1 s−1 was about three times greater than it was at the 10 s−1 sample strain rate. While the carbon black fillers increased the fracture energy of natural rubber by about 200% at quasistatic sample strain rates (0.01–0.1 s−1) and at 71 s−1, the carbon black fillers did nothing to improve the fracture energy of natural rubber at sample strain rates between 5 and 29 s−1. In this strain rate range, the fracture energy of 25 phr carbon black-filled natural rubber was almost the same as that in the unfilled natural rubber. The variation in the fracture energy with far-field strain rate was due to changes in the material behavior of natural rubber at high strain rates. Finite element analysis using a high-strain-rate constitutive equation for the 25 phr carbon black rubber specimen was used to calculate the fracture energy of the specimen at a sample strain rate of 55 s−1, and good agreement was found between the test and finite element results.

Publisher

The Tire Society

Subject

Polymers and Plastics,Mechanics of Materials,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic mechanical fields at the tip of a mode I crack in rubber-like solids;International Journal of Solids and Structures;2014-05

2. Technical Material Diagnostics - Fracture Mechanics of Filled Elastomer Blends;Fracture Mechanics and Statistical Mechanics of Reinforced Elastomeric Blends;2013

3. An asymptotic analysis of dynamic crack growth in rubber;Engineering Fracture Mechanics;2011-12

4. Fracture Parameters for Natural Rubber Under Dynamic Loading;Strain;2009-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3