A Finite Element Algorithm for the Prediction of Steady-State Temperatures of Rolling Tires

Author:

Narasimha Rao K. V.1,Kumar R. Krishna12,Bohara P. C.1,Mukhopadhyay R.1

Affiliation:

1. 1Raghupati Singhania Centre of Excellence for Tyre and Vehicle Mechanics, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600 036, India.

2. 2Corresponding author. email: rkkumar@iitm.ac.in

Abstract

Abstract A review of the literature on the numerical techniques used for the determination of tire temperatures shows that many attempts have been made to simulate tire temperatures with axisymmetric geometry through a simple decoupled representation of the total thermomechanical behavior. The deformation models used in these studies are primarily statically loaded tires with centrifugal forces to simulate tire-rolling behavior at different speeds. These techniques are usually limited to axisymmetric tires, which make the models applicable to only smooth or circumferential grooved tires. In this study, a finite element (FE) algorithm is developed using Petrov-Galerkin Eulerian technique in cylindrical coordinates. An objective of this approach is to provide a technique that is more appropriate for extension to nonaxisymmetric tires with tread patterns. The developed algorithm has been implemented for the prediction of three-dimensional operating temperatures for axisymmetric tires through a simple decoupled procedure. An iterative procedure is used to determine that the equilibrium temperatures, as loss modulus properties, are functions of strain and temperature. The experimental techniques required to determine tire operating temperatures are fairly involved and highly sophisticated. Therefore, the computation results of the developed algorithm for a smooth treaded tire are compared with the results obtained from a standard FE solver.

Publisher

The Tire Society

Subject

Polymers and Plastics,Mechanics of Materials,Automotive Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3