Zircons of fenites of Ilmeno-Vishnevogorsky Complex (Southern Urals)

Author:

Krasnobaev A. A.1,Valizer P. M.2,Farrakhova N. N.1

Affiliation:

1. A.N. Zavaritsky Institute of Geology and Geochemistry, Uralian Branch of RAS

2. Ilmen State Reserve, SU FRC MG Uralian Branch of RAS, Ilmeny State Reserve

Abstract

Research subject. U-Pb zircon dating, as well as a petrological and geochemical study of pyroxene-amphibole-, pyroxeneamphibole- biotite- and biotite-bearing fenites from the Central Alkaline Band Ilmeno-Vishnevogorsky Complex.Methods. The age of zircons was determined by an ion mass spectrometer (SHRIMP II, Centre of Isotopic Research VSEGEI). The content of REE and trace elements was estimated by secondary ion mass spectrometer methods (CAMECA IMS-4F, Valiev Institute of Physics and Technology RAS).Results. The mineralogical and geochemical (U, Th, REE) features of zircons, as well as fenites, reflect their polygenic-polychronous nature. Most zircon crystals have a metastable matrix and are characterized by averaged REE contents between igneous and hydrothermal types. These crystals are distinguished from magmatic zircons by high LREE contents and low values of Ce anomalies, and from hydrothermal zircons – by differentiated REE distribution spectra. Three ages of zircon were established: 2066–1686 (PR1), 425–404 (S2) and 284–266 (P1) Ma. PR1 zircons reflect the primary features and the degree of changes in the fenite substrate. S2 zircons, limited only to the biotite- bearing fenite, correspond to the age of the miaskite formation process. The P1 zircons clearly reflect the metasomatic process of fenitization initiated by late shear deformations. The temperature of the phenitization processes (based on the Ti content in zircons) was estimated at 630–670°C for S2 and ≤ 600°C for P1 fenites, respectively.Conclusions. Central Alkaline Band fenites were formed by the metasomatic process of PR1 substrate fenitization in the late stage (P1) of shear strains, which are widely expressed in the Ilmeno-Vishnevogorsky Complex.

Publisher

IGG UB RAS

Subject

Stratigraphy,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3