Amphibole peridotite and hornblendite of the Schrisheimite Hill intrusion of the Revdinskiy massif (Ural Platinum Belt)

Author:

Kozlov P. S.1,Berzin S. V.1,Ivanov K. S.1,Yudin D. S.2

Affiliation:

1. A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS

2. V.S. Sobolev Institute of Geology and Mineralogy, SB RAS

Abstract

Research subject. We studied the concentric-zonal massif (≈400 × 400 m) of amphibole-rich ultramafic rocks composed of amphibole peridotite (schriesheimite and amphibole wehrlite) with olivinite schlieren, pyroxenite and hornblendite located among gabbro at the Schrisheimite Hill in the Revdinskiy massif of the Ural Platinum Belt. The scope is characteristic of both of amphibole peridotites, which are extremely rare in the massifs of the Ural Platinum Belt, and the associated amphibole-rich ultramafic rocks. Aim. To expand the understanding of aqueous ultramafic magmatism in Ural Platinum Belt massifs. Materials and methods. To determine the age, we selected monofractions of high-alumina amphibole (pargasite-magnesiohastingsite) from two samples. Amphibole is not significantly altered by the regional metamorphism. 40Ar/39Ar dating was carried out according to the method described in (Travin et al., 2009; Yudin et al., 2021). The argon isotope composition was measured using a Micromass 5400 mass spectrometer (IGM SB RAS). Results. Amphibole peridotite has a hypidiomorphic (subhedral) or poikilitic texture. It is typical of igneous rocks, which indicates the crystallization of amphibole peridotite was by H2O-saturated magmas. Schlieren segregations of fine-grained schriesheimites and fine-grained olivinites are among coarse-grained schriesheimites. Amphibole peridotite, pyroxenite and hornblendite are deficient in high field strength elements (HFSE) and enriched in large ion lithophile elements (LILE) (with contrast concentration of Cs and Rb), which is typical of supra-subduction igneous formations. We obtained a 40Ar/39Ar age of 437.2 ± 6.7 Ma for an amphibole from hornblendite, which differs significantly from the ages of hornblendite determined earlier. Conclusions. Our new data indicate that hornblendite dikes in different UPB massifs formed over a fairly long time interval from the Early Silurian to the Early Devonian. These data expand modern ideas about the timing and nature of ultramafic water magmatism in the massifs of the Ural Platinum Belt.

Publisher

IGG UB RAS

Subject

Stratigraphy,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3