Au-Pd mineralization and ore-forming fluids of the Bleïda Far West deposit (Anti-Atlas, Morocco)

Author:

Kalinin Yu. A.1,Borovikov A. A.1,Maacha L.2,Zuhair M.2,Palyanova G. A.1,Zhitova L. M.1

Affiliation:

1. V. S. Sobolev Institute of Geology and Mineralogy SB RAS

2. Managem Group, Twin Center

Abstract

Research subject. Au-Pd mineralization of the Bleïda Far West deposit, represented by an unusual association of palladium gold, minerals of the Pd-Bi-Se system, as well as silvery gold and minerals of the Pd-Bi-Te system. The deposit is localized in the Neoproterozoic volcanic rocks of the central Anti-Atlas (Morocco).Methods. A chemical analysis of minerals was carried out at the Center for Collective Use of Multielement and Isotopic Studies of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia) using the electron probe microanalysis (EPMA) method. Fluid inclusions were studied using cryometry and homogenization using a THMSG-600 microthermochamber. The composition of the gas phase and the determination of the solid phases of the inclusions were carried out by Raman spectroscopy. The qualitative chemical composition of fluid inclusion salts was determined by the EPMA method.Results and conclusions. It is suggested that palladium gold and minerals of the Pd-Bi-Se system were formed under the conditions close to those during the formation of Au-Pd infiltration deposits in Brazil, while silvery gold and minerals of the Pd-Bi-Te system could be formed under the conditions similar, but not identical, to the formation conditions of Au-Pd low-temperature mineralization in porphyry deposits. According to the study of fluid inclusions in quartz and calcite, Au-Pd mineralization was formed at temperatures from 384 to 75°C with the participation of homogeneous or heterophasic CaCl2-NaCl highly saline hydrothermal solutions at a depth of 2.8–2.7 km. Minerals of the Pd-Bi-Se system, previously unknown in Bleïda Far West ores, were found in association with native gold: osterboshite (Pd, Cu)7Se5, paladsite (Pd17Se15), (Au,Ag)Se, padmaite PdBiSe, native Se, as well as a number of unidentified phases – Pd2BiSe, Pd3BiSe, Pd4BiSe and Pd5BiSe.

Publisher

IGG UB RAS

Subject

Stratigraphy,Geochemistry and Petrology,Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3