Development and Accuracy Test of a Fused Deposition Modeling (FDM) 3D Printing using H-Bot Mechanism

Author:

Hadisujoto Budi1,Wijaya Robby1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering and Technology, Sampoerna University

Abstract

Additive manufacturing process known as the 3D printing process is an advanced manufacturing process including one of the components to support industrial revolution 4.0. The initial development of a 3D printing machine at Sampoerna University is the background of this research. The 3D printing setup of Fused Deposition Modeling (FDM) was built using H-bot moving mechanism by considering the rigidity aspect. The FDM printing method is selected due to its cost and reliability. In this early development, the brackets were custom made using a 3D printer with Polylactic Acid (PLA) material. The result showed that the software worked properly in accordance with the assembled mechanical and electrical parts. The 3D printer could print simple objects such as planes and cubes with small dimensions. However, the printing specimen still lacked accuracy caused by the less rigidity of linear rail brackets, less coplanar belt arrangement, and error in some electronic components.

Publisher

Sampoerna University - Faculty of Engineering and Technology

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Man vs. machine: Automated bioink mixing device improves reliability and reproducibility of bioprinting results compared to human operators;International Journal of Bioprinting;2024-02-12

2. Development of 3D Modeling Parameter Design in Furniture Design;2023 World Conference on Communication & Computing (WCONF);2023-07-14

3. A study of stabilization quanser linear inverted pendulum with MATLAB Simulink;PROCEEDINGS OF THE SYMPOSIUM ON ADVANCE OF SUSTAINABLE ENGINEERING 2021 (SIMASE 2021): Post Covid-19 Pandemic: Challenges and Opportunities in Environment, Science, and Engineering Research;2023

4. Kinematic design of trans phalangeal prosthetic device with 1-DOF;PROCEEDINGS OF THE SYMPOSIUM ON ADVANCE OF SUSTAINABLE ENGINEERING 2021 (SIMASE 2021): Post Covid-19 Pandemic: Challenges and Opportunities in Environment, Science, and Engineering Research;2023

5. Development of extrusion machine design for recycling plastic waste;PROCEEDINGS OF THE SYMPOSIUM ON ADVANCE OF SUSTAINABLE ENGINEERING 2021 (SIMASE 2021): Post Covid-19 Pandemic: Challenges and Opportunities in Environment, Science, and Engineering Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3