Computational Shape Models Characterize Shape Change of the Left Atrium in Atrial Fibrillation

Author:

Cates Joshua12,Bieging Erik3,Morris Alan2,Gardner Gregory2,Akoum Nazem23,Kholmovski Eugene234,Marrouche Nassir23,McGann Christopher23,MacLeod Rob S.125

Affiliation:

1. Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.

2. Comprehensive Arrhythmia Research and Management Center, University of Utah, Salt Lake City, UT, USA.

3. University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA.

4. Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, USA.

5. Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.

Abstract

Shape change of the left atrium (LA) and LA appendage in atrial fibrillation (AF) patients is hypothesized to be linked to AF pathology and to play a role in thrombogenesis; however, many aspects of shape variation in the heart are poorly understood. To date, studies of the LA shape in AF have been limited to empirical observation and summary metrics, such as volume and its likeness to a sphere. This paper describes a more comprehensive approach to the study of the LA shape through the use of computationally derived statistical shape models. We describe practical approaches that we have developed to extract shape parameters automatically from the three-dimensional MR images of the patient. From these images and our techniques, we can produce a more comprehensive description of LA geometric variability than that has been previously possible. We present the methodology and results from two examples of specific analyses using shape models: (1) we describe statistically significant group differences between the normal control and AF patient populations ( n = 137) and (2) we describe characteristic shapes of the LA appendage that are associated with the risk of thrombogenesis determined by transesophageal echocardiography ( n = 203).

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3