Establishment of Prognostic Models for Astrocytic and Oligodendroglial Brain Tumors with Standardized Quantification of Marker Gene Expression and Clinical Variables

Author:

Zhou Yi-Hong1,Hess Kenneth R.2,Raj Vinay R.3,Yu Liping4,Liu Longjian5,Yung Alfred W.K.6,Linskey Mark E.1

Affiliation:

1. Department of Neurological Surgery, The University of California, Irvine, CA 92697, USA.

2. Departments of Biostatistics, Houston, TX 77030, USA.

3. Ziren Research LLC, Irvine, CA 92618, USA.

4. Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, PA 19102, USA.

5. Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.

6. Division of Medical Genetics, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.

Abstract

Background Prognosis models established using multiple molecular markers in cancer along with clinical variables should enable prediction of natural disease progression and residual risk faced by patients. In this study, multivariate Cox proportional hazards analyses were done based on overall survival (OS) of 100 glioblastoma multiformes (GBMs, 92 events), 49 anaplastic astrocytomas (AAs, 33 events), 45 gliomas with oligodendroglial features, including anaplastic oligodendroglioma (AO, 13 events) and oligodendraglioma (O, 9 events). The modeling included two clinical variables (patient age and recurrence at the time of sample collection) and the expression variables of 13 genes selected based on their proven biological and/or prognosis functions in gliomas ( ABCG2, BMI1, MELK, MSI1, PROM1, CDK4, EGFR, MMP2, VEGFA, PAX6, PTEN, RPS9, and IGFBP2). Gene expression data was a log-transformed ratio of marker and reference ( ACTB) mRNA levels quantified using absolute real-time qRT-PCR. Results Age is positively associated with overall grade (4 for GBM, 3 for AA, 2_1 for AO_O), but lacks significant prognostic value in each grade. Recurrence is an unfavorable prognostic factor for AA, but lacks significant prognostic values for GBM and AO_O. Univariate models revealed opposing prognostic effects of ABCG2, MELK, BMI1, PROM1, IGFBP2, PAX6, RPS9, and MSI1 expressions for astrocytic (GBM and AA) and oligodendroglial tumors (AO_O). Multivariate models revealed independent prognostic values for the expressions of MSI1 (unfavorable) in GBM, CDK4 (unfavorable) and MMP2 (favorable) in AA, while IGFBP2 and MELK (unfavorable) in AO_O. With all 13 genes and 2 clinical variables, the model R 2 was 14.2% ( P= 0.358) for GBM, 45.2% ( P= 0.029) for AA, and 62.2% ( P= 0.008) for AO_O. Conclusion The study signifies the challenge in establishing a significant prognosis model for GBM. Our success in establishing prognosis models for AA and AO_O was largely based on identification of a set of genes with independent prognostic values and application of standardized gene expression quantification to allow formation of a large cohort in analysis.

Publisher

SAGE Publications

Subject

Biochemistry, medical,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3