Managing Multi-center Flow Cytometry Data for Immune Monitoring

Author:

White Scott1,Laske Karoline2,Welters Marij J.P.3,Bidmon Nicole4,Van Der Burg Sjoerd H.3,Britten Cedrik M.4,Enzor Jennifer5,Staats Janet6,Weinhold Kent J.7,Gouttefangeas Cέcile2,Chan Cliburn1

Affiliation:

1. Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham NC, USA.

2. Institute for Cell Biology, Department of Immunology, Tübingen, Germany.

3. Experimental Cancer Immunology and Therapy, Department of Clinical Oncology (K1-P), Leiden University Medical Center, Leiden, the Netherlands.

4. Translational Oncology at the University Medical Center of the Johannes-Gutenberg University gGmbH, Mainz, Germany.

5. Flow Cytometry Core Facility, Center for AIDS Research, Duke University Medical Center, Durham, NC, USA.

6. Scientific/Research Laboratory Manager, Flow Cytometry Core Facility, Center for AIDS Research, Duke University Medical Center, Durham, NC, USA.

7. Division of Surgical Sciences, Duke Center for AIDS Research (CFAR), Duke University Medical Center, Durham, NC, USA.

Abstract

With the recent results of promising cancer vaccines and immunotherapy 1 – 5 , immune monitoring has become increasingly relevant for measuring treatment-induced effects on T cells, and an essential tool for shedding light on the mechanisms responsible for a successful treatment. Flow cytometry is the canonical multi-parameter assay for the fine characterization of single cells in solution, and is ubiquitously used in pre-clinical tumor immunology and in cancer immunotherapy trials. Current state-of-the-art polychromatic flow cytometry involves multi-step, multi-reagent assays followed by sample acquisition on sophisticated instruments capable of capturing up to 20 parameters per cell at a rate of tens of thousands of cells per second. Given the complexity of flow cytometry assays, reproducibility is a major concern, especially for multi-center studies. A promising approach for improving reproducibility is the use of automated analysis borrowing from statistics, machine learning and information visualization 21 – 23 , as these methods directly address the subjectivity, operator-dependence, labor-intensive and low fidelity of manual analysis. However, it is quite time-consuming to investigate and test new automated analysis techniques on large data sets without some centralized information management system. For large-scale automated analysis to be practical, the presence of consistent and high-quality data linked to the raw FCS files is indispensable. In particular, the use of machine-readable standard vocabularies to characterize channel metadata is essential when constructing analytic pipelines to avoid errors in processing, analysis and interpretation of results. For automation, this high-quality metadata needs to be programmatically accessible, implying the need for a consistent Application Programming Interface (API). In this manuscript, we propose that upfront time spent normalizing flow cytometry data to conform to carefully designed data models enables automated analysis, potentially saving time in the long run. The ReFlow informatics framework was developed to address these data management challenges.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3