An Integrated Statistical Approach to Compare Transcriptomics Data across Experiments: A Case Study on the Identification of Candidate Target Genes of the Transcription Factor PPARα

Author:

Ullah Mohammad Ohid1,Müller Michael12,Hooiveld Guido J.E.J.12

Affiliation:

1. Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, The Netherlands.

2. Netherlands Nutrigenomics Center, TI Food and Nutrition, Wageningen, The Netherlands.

Abstract

An effective strategy to elucidate the signal transduction cascades activated by a transcription factor is to compare the transcriptional profiles of wild type and transcription factor knockout models. Many statistical tests have been proposed for analyzing gene expression data, but most tests are based on pair-wise comparisons. Since the analysis of microarrays involves the testing of multiple hypotheses within one study, it is generally accepted that one should control for false positives by the false discovery rate (FDR). However, it has been reported that this may be an inappropriate metric for comparing data across different experiments. Here we propose an approach that addresses the above mentioned problem by the simultaneous testing and integration of the three hypotheses (contrasts) using the cell means ANOVA model. These three contrasts test for the effect of a treatment in wild type, gene knockout, and globally over all experimental groups. We illustrate our approach on microarray experiments that focused on the identification of candidate target genes and biological processes governed by the fatty acid sensing transcription factor PPARα in liver. Compared to the often applied FDR based across experiment comparison, our approach identified a conservative but less noisy set of candidate genes with same sensitivity and specificity. However, our method had the advantage of properly adjusting for multiple testing while integrating data from two experiments, and was driven by biological inference. Taken together, in this study we present a simple, yet efficient strategy to compare differential expression of genes across experiments while controlling for multiple hypothesis testing.

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3