Affiliation:
1. Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.
2. Department of Computer Science, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.
Abstract
A good understanding of the population dynamics of algal communities is crucial in several ecological and pollution studies of freshwater and oceanic systems. This paper reviews the subsequent introduction to the automatic identification of the algal communities using image processing techniques from microscope images. The diverse techniques of image preprocessing, segmentation, feature extraction and recognition are considered one by one and their parameters are summarized. Automatic identification and classification of algal community are very difficult due to various factors such as change in size and shape with climatic changes, various growth periods, and the presence of other microbes. Therefore, the significance, uniqueness, and various approaches are discussed and the analyses in image processing methods are evaluated. Algal identification and associated problems in water organisms have been projected as challenges in image processing application. Various image processing approaches based on textures, shapes, and an object boundary, as well as some segmentation methods like, edge detection and color segmentations, are highlighted. Finally, artificial neural networks and some machine learning algorithms were used to classify and identifying the algae. Further, some of the benefits and drawbacks of schemes are examined.
Subject
Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献