ordinalgmifs: An R Package for Ordinal Regression in High-dimensional Data Settings

Author:

Archer Kellie J.1,Hou Jiayi2,Zhou Qing1,Ferber Kyle1,Layne John G.3,Gentry Amanda E.1

Affiliation:

1. Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA.

2. Clinical and Translational Research Institute, University of California San Diego, San Diego, CA.

3. Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.

Abstract

High-throughput genomic assays are performed using tissue samples with the goal of classifying the samples as normal < pre-malignant < malignant or by stage of cancer using a small set of molecular features. In such cases, molecular features monotonically associated with the ordinal response may be important to disease development; that is, an increase in the phenotypic level (stage of cancer) may be mechanistically linked through a monotonic association with gene expression or methylation levels. Though traditional ordinal response modeling methods exist, they assume independence among the predictor variables and require the number of samples ( n) to exceed the number of covariates ( P) included in the model. In this paper, we describe our ordinalgmifs R package, available from the Comprehensive R Archive Network, which can fit a variety of ordinal response models when the number of predictors ( P) exceeds the sample size ( n). R code illustrating usage is also provided.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3