Assessing Simazine Degradation Patterns in California Citrus Orchards with Different Simazine Use Histories

Author:

Abit M. Joy M.1,Shaner Dale L.2,Krutz L. Jason3,Rainbolt Christine M.4,O'Connell Neil V.5,Faber Ben A.6,Hanson Bradley D.1

Affiliation:

1. University of California-Davis, Davis CA, USA 95616.

2. U.S. Department of Agriculture-Agricultural Research Service, Water Management Research Unit, Fort Collins, CO 80526.

3. U.S. Department of Agriculture-Agricultural Research Service, Southern Weed Science Research Unit, Stoneville, MS 38776.

4. California State University, Fresno CA 93740.

5. University of California Cooperative Extension, Tulare, CA 93274.

6. University of California Cooperative Extension, Ventura, CA 93003.

Abstract

Simazine is commonly used to control broadleaf weeds and annual grasses in perennial tree and vine crops because of its relatively low cost and long residual activity. Simazine may be subject to enhanced biodegradation in some areas which can result in decreased herbicide persistence and reduced residual weed control. Laboratory studies were conducted to determine if rapid simazine degradation occurs in California citrus orchards and if degradation rates are correlated with simazine use history. In the Central Valley, simazine degradation curves indicate that simazine degradation rate is more rapid in soils with a simazine use history (adapted) compared to soils with no recent use (non-adapted). In these soils, simazine dissipation was two- to three-fold faster in adapted compared with the non-adapted soils. However, in southern California, simazine dissipation and mineralization were not substantially different among soils with different simazine use histories. Repeated simazine use in California orchards can lead to the development of enhanced microbial degradation of the herbicide. However, soil type and long-term cropping factors can affect persistence and distribution of herbicide-degrading microbial populations in California orchards.

Publisher

SAGE Publications

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3