Prediction of O-glycosylation Sites Using Random Forest and GA-Tuned PSO Technique

Author:

Hassan Hebatallah1,Badr Amr2,Abdelhalim M. B.1

Affiliation:

1. Department of Computer Science, College of Computing and Information Technology, Arab Academy for Science and Technology and Maritime Transport (AASTMT), Cairo, Egypt.

2. Department of Computer Science, Faculty of Computers and Information, Cairo University, Cairo, Egypt.

Abstract

O-glycosylation is one of the main types of the mammalian protein glycosylation; it occurs on the particular site of serine (S) or threonine (T). Several O-glycosylation site predictors have been developed. However, a need to get even better prediction tools remains. One challenge in training the classifiers is that the available datasets are highly imbalanced, which makes the classification accuracy for the minority class to become unsatisfactory. In our previous work, we have proposed a new classification approach, which is based on particle swarm optimization (PSO) and random forest (RF); this approach has considered the imbalanced dataset problem. The PSO parameters setting in the training process impacts the classification accuracy. Thus, in this paper, we perform parameters optimization for the PSO algorithm, based on genetic algorithm, in order to increase the classification accuracy. Our proposed genetic algorithm-based approach has shown better performance in terms of area under the receiver operating characteristic curve against existing predictors. In addition, we implemented a glycosylation predictor tool based on that approach, and we demonstrated that this tool could successfully identify candidate glycosylation sites in case study protein.

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3