TMAinspiration: Decode Interdependencies in Multifactorial Tissue Microarray Data

Author:

Boecker Florian12,Buerger Horst345,Mallela Nikhil V.1,Korsching Eberhard1

Affiliation:

1. Institute of Bioinformatics, University of Münster, Münster, Germany.

2. INRES Crop Bioinformatics, University of Bonn, Bonn, Germany.

3. Institute of Pathology, Paderborn, Germany.

4. Breast Cancer Center, Paderborn, Germany.

5. Institute of Pathology, University of Utrecht, Utrecht, The Netherlands.

Abstract

There are no satisfying tools in tissue microarray (TMA) data analysis up to now to analyze the cooperative behavior of all measured markers in a multifactorial TMA approach. The developed tool TMAinspiration is not only offering an analysis option to close this gap but also offering an ecosystem consisting of quality control concepts and supporting scripts to make this approach a platform for informed practice and further research. The TMAinspiration method is specifically focusing on the demands of the TMA analysis by controlling errors and noise by a generalized regression scheme while at the same time avoiding to introduce a priori too many constraints into the analysis of the data. So, we are testing partitions of a proximity table to find an optimal support for a ranking scheme of molecular dependencies. The idea of combining several partitions to one ensemble, which is balancing the optimization process, is based on the main assumption that all these perspectives on the cellular network need to be self-consistent. Several application examples in breast cancer and one in squamous cell carcinoma demonstrate that this procedure is nicely confirming a priori knowledge on the expression characteristics of protein markers, while also integrating many new results discovered in the treasury of a bigger TMA experiment. The code and software are now freely available at: http://complex-systems.unimuenster.de/tma_inspiration.html .

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3