Biological Functions of the Genes in the Mammaprint Breast Cancer Profile Reflect the Hallmarks of Cancer

Author:

Tian Sun1,Roepman Paul1,van't Veer Laura J12,Bernards Rene13,De Snoo Femke1,Glas Annuska M1

Affiliation:

1. Agendia BV, Science Park 406, 1098 XH Amsterdam, The Netherlands.

2. Division of Diagnostic Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

3. Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

Abstract

Background MammaPrint was developed as a diagnostic tool to predict risk of breast cancer metastasis using the expression of 70 genes. To better understand the tumor biology assessed by MammaPrint, we interpreted the biological functions of the 70-genes and showed how the genes reflect the six hallmarks of cancer as defined by Hanahan and Weinberg. Results We used a bottom-up system biology approach to elucidate how the cellular processes reflected by the 70-genes work together to regulate tumor activities and progression. The biological functions of the genes were analyzed using literature research and several bioinformatics tools. Protein-protein interaction network analyses indicated that the 70-genes form highly interconnected networks and that their expression levels are regulated by key tumorigenesis related genes such as TP53, RB1, MYC, JUN and CDKN2A. The biological functions of the genes could be associated with the essential steps necessary for tumor progression and metastasis, and cover the six well-defined hallmarks of cancer, reflecting the acquired malignant characteristics of a cancer cell along with tumor progression and metastasis-related biological activities. Conclusion Genes in the MammaPrint gene signature comprehensively measure the six hallmarks of cancer-related biology. This finding establishes a link between a molecular signature and the underlying molecular mechanisms of tumor cell progression and metastasis.

Publisher

SAGE Publications

Subject

Biochemistry (medical),Pharmacology,Molecular Medicine

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3