Genetic implications of a simulation model of litter size in swine based on ovulation rate, potential embryonic viability and uterine capacity: I. Genetic theory.

Author:

Bennett G. L.1,Leymaster K. A.1

Affiliation:

1. U.S. Department of Agriculture, Clay Center, NE 68933-0166

Abstract

Abstract A simulation model of litter size in swine based on ovulation rate, uterine capacity and potential embryo viability was compared to three genetic models to clarify its genetic characteristics. The simulation model is equivalent to independent culling based on fixed levels of potentially viable embryos and uterine capacity. Litter size also can be described by a combination of additive, additive × additive, mean environment × additive, random environment and additive × random environment effects. A third genetic model that can describe the simulation model is the associative effects model, in which litter size is the result of grouping two genotypes. The fixed independent culling levels model predicts that genetic parameters will change as the component means change. This genetic model also predicts that selection on an index of ovulation rate and uterine capacity would improve selection response for litter size. This genetic model predicts asymmetry of correlated responses in ovulation rate and uterine capacity when selecting for high and low litter size. The nonadditive genetic model predicts covariances among relatives that are different from their additive relationships; however, simulated results did not detect any differences. The nonadditive genetic model also predicts that heterosis for litter size will differ among crosses based on the mean environment and on additive × additive genetic interaction. The associative effects model predicts that selection for litter size will always lead to a positive response in litter size.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3