Heterogeneity of Abnormal RUNX1 Leading to Clinicopathologic Variations in Childhood B-Lymphoblastic Leukemia

Author:

Knez Virginia M.1,Carstens Billie J.12,Swisshelm Karen L.12,McGranahan Amy N.3,Liang Xiayuan13

Affiliation:

1. Department of Pathology, University of Colorado School of Medicine, Aurora

2. Colorado Genetics Laboratory, University of Colorado School of Medicine, Aurora

3. Department of Pathology, Children’s Hospital Colorado, Aurora

Abstract

Abstract Objectives: Abnormalities of the RUNX1 gene in childhood B-acute lymphoblastic leukemia (B-ALL) are manifested by ETV6-RUNX1 or RUNX1 amplification. A detailed comparison between the two regarding clinicopathologic features with genetic analysis has not been performed previously. This parallel study assessed how different RUNX1 abnormalities affect the clinicopathology of B-ALL. Methods: We compared clinicopathologic factors, including age, sex, WBC count, cerebrospinal fluid (CSF) involvement, immunophenotype, and blast proliferation rate between B-ALL with RUNX1 amplification (10 cases) and B-ALL with ETV6-RUNX1 translocation (67 cases) in childhood B-ALL. Results: CD7 was often expressed in RUNX1 amplification but not in ETV6-RUNX1 (44% vs 0%, P = .0001) and appeared to correlate with CSF involvement in the former group (3/4 [75%]). CD13 was often detected in ETV6-RUNX1 with additional RUNX1 gain (38%) with an even higher frequency in double ETV6-RUNX1 translocation (77%), but was not detected in RUNX1 amplification (0%, P < .05). Children with RUNX1 amplification were older and more often CSF positive, while those with ETV6-RUNX1 were younger, more frequently had hyperleukocytosis, and had higher blast proliferation rates. Conclusions: RUNX1 copy numbers seem to be proportional to the age of B-ALL onset and the frequency of CSF involvement, while RUNX1 amplification vs translocation causes aberrant expression of CD7 and CD13, respectively.

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3