Multi-hole spherical CT scan method to characterize large quantities of bones in rats

Author:

Neng Nenden Mulyaningsih ORCID,Ariadne Lakshmidevi Juwono ,Djarwani Soeharso Soejoko ,Dewi Apri Astuti

Abstract

BACKGROUND New therapeutic options are often explored in in vivo studies using animals like rats. Since rats are small, it is difficult to examine them in a computed tomography (CT) scan. This study aimed to introduce a multi-hole spherical model CT scan method as a new, fast, economical, and reliable method to characterize large quantities of rat bones at once in estimating the timing of osteoporosis in ovariectomized white rats. METHODS 50 female white rats (12 weeks old) were treated as the control group, and 40 rats of the same age were ovariectomized to establish the osteoporosis model. Sham rats were sacrificed at 13, 15, 17, 19, and 21 weeks old, while the ovariectomized rats were sacrificed at 15, 17, 19, and 21 weeks old. Afterward, tibia bones were removed, placed in the multi-hole spherical model, and characterized using a CT scan. Their characteristics were compared using a scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). RESULTS The Hounsfield unit scores resulted from the multi-hole spherical model CT scan method of tibia bones of rats were consistent with the percentage of the osteocyte cavities, canalicular diameters, and crystal size. The multi-hole spherical model CT scan method could produce 50 times more data than the SEM, TEM, or XRD. CONCLUSIONS Multi-hole spherical model CT scan was considered good and reliable in assessing bone quality parameters in rat samples simultaneously.

Publisher

Faculty of Medicine, Universitas Indonesia

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Osteoporosis by Electron Microscopy;Electron Microscopy;2022-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3