Holocene Sea-Level Record on Funafuti and Potential Impact of Global Warming on Central Pacific Atolls

Author:

Dickinson William R.

Abstract

AbstractGeomorphic features inherited from the mid-Holocene glacio-hydro-isostatic sea-level highstand that affected the central Pacific region influence the susceptibility of atoll islets to potentially enhanced wave erosion associated with rise in sea level from global warming. Shoreline morphology on multiple islets of Funafuti atoll in central Tuvalu reflects a relative mid-Holocene sea-level highstand 2.2–2.4 m above modern sea level. Typical islets are composed of unconsolidated post-mid-Holocene sediment resting disconformably on cemented coral rubble formed beneath now-emergent mid-Holocene reef flats. Exposed remnants of the lithified islet foundations serve as resistant buttresses protecting the flanks of atoll islets from wave attack. Islets lacking cemented mid-Holocene deposits as part of their internal structure are migratory sand cays with unstable shorelines. Any future sea-level rise ≥0.75 m, bringing high tide above the elevation of mid-Holocene low tide, might trigger enhanced wave erosion of stable atoll islets by overtopping the indurated mid-Holocene reef platforms. As analogous threshold relations are inferred for other central Pacific atolls, the risk of future inundation of island nations cannot be evaluated solely in terms of expected sea-level rise with respect to gross islet elevations.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference61 articles.

1. Sea level rise;Warrick;Climate Change: The IPCC Scientific Assessment,1990

2. The geology of Funafuti The Atoll of Funafuti: Borings into a Coral Reef and the Results;David,1904

3. Late Holocene shoreline development in the Hawaiian Islands;Jones;Journal of Coastal Research,1998

4. Climatic change and the future of atoll states;Roy;Journal of Coastal Research,1991

5. An analysis of the variation of ocean floor bathymetry and heat flow with age

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3