Pollen-Derived Rainfall and Temperature Estimates from Lake Tanganyika and Their Implication for Late Pleistocene Water Levels

Author:

Vincens Annie,Chalié Françoise,Bonnefille Raymonde,Guiot Joel,Tiercelin Jean-Jacques

Abstract

AbstractPalaeoclimatic estimates of mean annual temperature and rainfall in the southern Tanganyika basin between 25,000 and 9000 yr B.P. have been established from two pollen sequences based on the best-analogue method. The results give evidence of a mean temperature decrease of about 4.2°C during the last glaciation, a value consistent with that previously obtained in the catchment area on the Burundi Highlands. This cooling was synchronous with a decrease of mean annual precipitation of about 180 mm/yr. Postglacial climatic conditions were established by 12,700 yr B.P., with warming and wetness continuing to increase from this date onward. These new palaeoclimatic data will be useful for hydrological reconstructions of Lake Tanganyika, particularly during the last glacial age for which the magnitude of water-level fall has been a controversial issue; our rainfall estimates are more consistent with low values (-250 to -300 m fall) than with high ones (-600 m) previously proposed.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3