Paleoclimate of Southwestern China for the Past 50,000 yr Inferred from Lake Sediment Records

Author:

Hodell David A.,Brenner Mark,Kanfoush Sharon L.,Curtis Jason H.,Stoner Joseph S.,Xueliang Song,Yuan Wu,Whitmore Thomas J.

Abstract

Long sediment cores (12.5 and 13.5 m) from two lakes in Yunnan Province were used to infer the paleoclimate of southwest China over the past 50,000 yr. During the Holocene and marine isotope stage (MIS 3), bio-induced carbonate precipitation and organic matter (OM) production was high, suggesting warm temperatures and high primary productivity. In contrast, sediment inorganic carbon (IC) and organic carbon (OC) concentrations were low in last glacial deposits from 38,000 to 12,000 cal yr B.P., indicating cool temperatures and low productivity. The 50,000-yr record has alternating peaks of carbonate and coarse-grain (>38 μm) quartz that reflect warm, moist interglacial or interstadial conditions alternating with cold, dry glacial or stadial conditions, respectively. Spectral analysis of the carbonate and quartz signals reveals power concentrated at periods of 7200 and 8900 cal yr, respectively, that may reflect a nonlinear climate response to precessional forcing at a time of reduced eccentricity modulation (McIntyre and Molfino, 1996). Oxygen isotope values of calcite from Yunnan lake cores indicate the summer monsoon was weak during the last glaciation from 50,000 to 12,000 cal yr B.P. The summer monsoon intensified between 12,000 and 8000 cal yr B.P., but weakened gradually in response to insolation forcing during the mid-to-late Holocene. Our results support the Overpeck et al. (1996) model that posits a weak summer monsoon during the last glaciation that responded nonlinearly to insolation forcing when its intensity was affected by Eurasian snow cover and ice-sheet extent. The summer monsoon intensified and responded linearly to seasonal insolation forcing in the Holocene when ice volume diminished.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3