Biogenic Silica Record of the Lake Baikal Response to Climatic Forcing during the Brunhes

Author:

Prokopenko Alexander A.,Karabanov Eugene B.,Williams Douglas F.,Kuzmin Mikhail I.,Shackleton Nicholas J.,Crowhurst Simon J.,Peck John A.,Gvozdkov Alexander N.,King John W.

Abstract

AbstractThis work presents a detailed, orbitally tuned biogenic silica record of continental paleoclimate change during the Brunhes chron. The Brunhes/Matuyama boundary lies within the warm isotopic stage 19 in Baikal, and the boundaries between eight lithological cycles correspond to terminations in the marine oxygen isotope record. The high amplitude and resolution of climatically driven changes in BioSi content in Lake Baikal sediments permits tuning of almost every precessional cycle during the Brunhes and reveals the structure of interglacial stages. For example, the last three interglacial stages (MIS 5, 7, and 9) clearly consist of five substages (a, b, c, d, e) corresponding to precessional insolation peaks. Abrupt and intense regional glaciations in Siberia during substages 5d and 7d were driven by extreme insolation minima. During substage 9d cooling was more gradual in response to more moderate forcing. The impact of strong glaciation is also observed in the middle of stage 15, where full glacial conditions appear to have lasted for over 30,000 yr during substages 15d, 15c, and 15b. Marine oxygen isotopic stage 11 appears to be the warmest period during the Brunhes in the Lake Baikal record, with at least three substages.A new hypothesis is presented regarding the response of the Lake Baikal BioSi record to insolation forcing. Based on the mechanism controlling modern diatom blooms, biogenic silica production is hypothesized to be dependent on changes in the heat balance of the lake and consequently on changes in the thermal structure of the water column. This mechanism is also sensitive to short-term sub-Milankovich cooling events, such as the mid-Eemian cooling, the Montaigu event during substage 5c, and a cooling which appears to be analogous to the Montaigu event during substage 9c. The continuity of the Lake Baikal paleoclimate record, its sensitivity to orbital forcing, and its high resolution make it an excellent candidate for a new “paleoclimatic stratotype” section for continental Asia.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3