Author:
Anderson Lesleigh,Abbott Mark B.,Finney Bruce P.
Abstract
AbstractAnalyses of sediment cores from two lakes in the central Brooks Range provide temperature and moisture balance information for the past ∼8500 cal yr at century-scale resolution. Two methods of oxygen isotope analysis are used to reconstruct past changes in the effective moisture (precipitation minus evaporation) and temperature. Effective moisture is inferred from oxygen isotope ratios in sediment cellulose from Meli Lake (area ∼0.13 km2, depth 19.4 m). The lake has a low watershed-to-lake-area ratio (7) and significant evaporation relative to input. Summer temperature shifts are based on oxygen isotope analyses of endogenic calcite from Tangled Up Lake (area ∼0.25 km2, depth 3.5 m). This basin has a larger watershed-to-lake-area ratio (91) and less evaporation relative to input. Sediment oxygen isotope analyses from the two sites indicate generally more arid conditions than present prior to ∼6000 cal yr B.P. Subsequently, the region became increasingly wet. Temperature variability is recorded minimally at centennial scale resolution with values that are generally cool for the past ∼6700 cal yr. The timing and direction of climate variability indicated by the oxygen isotope time series from Meli and Tangled Up lakes are consistent with previously established late Holocene glacier advances at ∼5000 cal yr B.P. in the central Brooks Range, and high lake-levels at Birch Lake since ∼5500 cal yr B.P. This unique use of oxygen isotopes reveals both moisture balance and temperature histories at previously undetected high-resolution temporal scales for northern Alaska during the middle to late Holocene.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献