Synthesis and characterisation of ultra-hard and lightweight AlMgB14–xTiB2 composites for wear-resistance and ballistic protection

Author:

Kevorkijan Varužan,Davorin Škapin Srečo,Suvorov Danilo

Abstract

As an alternative to mechanical alloying, high temperature synthesis (HTS) of ultra-hard, super-abrasive AlMgB14 was performed under normal pressure. The reaction mixture consisted of elemental Al and B, whereas Mg was added in the form of a Mgprecursor which liberates elemental magnesium approximately 400 ºC above the melting point of Mg, in this way reducing its evaporation during heating-up. 95 wt % conversion to AlMgB14 and 5 wt % to MgAl2O4 was achieved. The synthesized AlMgB14 baseline powder, as well as mixtures of AlMgB14 consisting of 30, 50 and 70 wt% of TiB2, were hot pressed to near theoretical density. The various samples produced were characterized for microstructure and hardness. A microhardness of 29.4GPa in hot pressed AlMgB14 and a maximum Vickers hardness of 30.2 GPa in hot pressed samples of AlMgB14 reinforced with 70 wt% of TiB2 particles (d50=4,1µm) was achieved. Future project milestones necessary for achieving a higher AlMgB14 reaction yield, reducing the MgAl2O4 content and producing sinter-active AlMgB14 powder, as well as hot pressed composites processing improvement for gaining maximum hardness are also presented.

Publisher

Association of Metallurgical Engineers of Serbia

Subject

Metals and Alloys,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3