Modeling and optimization of flank wear and surface roughness of Monel-400 during hot turning using artificial intelligence techniques

Author:

Hanief M.,Charoo M. S.

Abstract

This work aims to model and investigate the effect of cutting speed, feed rate, depth of cut and the workpiece temperature on surface roughness and flank wear (responses) of Monel-400 during turning operation. It also aims to optimize the machining parameters of the above operation. A power-law model is developed for this purpose and is corroborated by comparing the results with the artificial neural network (ANN) model. Based on the coefficient of determination (R2), mean square error (MSE), and mean absolute percentage error (MAPE) the results of the power-law model are found to be in close agreement with that of ANN. Also, the proposed power law and ANN models for surface roughness and flank wear are in close agreement with the experiment results. For the power-law model R2, MSE, and MAPE were found to be 99.83%, 9.9×10-4, and 3.32×10-2, and that of ANN were found to be 99.91%, 5.4×10-4, and 5.96×10-2, respectively for surface roughness and flank wear. An error of 0.0642% (minimum) and 8.7346% (maximum) for surface roughness and 0.0261% (minimum) and 4.6073% (maximum) for flank wear were recorded between the observed and experimental results, respectively. In order to optimize the objective functions obtained from power-law models of the surface roughness and flank wear, GA (genetic algorithm) was used to determine the optimal values of the operating parameters and objective functions thereof. The optimal value of 2.1973 µm and 0.256 mm were found for surface roughness and flank wear, respectively.

Publisher

Association of Metallurgical Engineers of Serbia

Subject

Metals and Alloys,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3