Modern blast furnace ironmaking technology: potentials to meet the demand of high hot metal production and lower energy consumption

Author:

Mousa Elsayed

Abstract

Iron and steel making is one of the most intense energy consuming in the industrial sectors. The intensive utilization of fossil carbon in the ironmaking blast furnace (BF) is related directly to CO2 emission and global warming. Lowering the energy consumption and CO2 emission from BF comes on the top priorities from both economic and environmental aspects. The BF has undergone tremendous modifications and development to increase production and improve the overall efficiency. Both technological development and scientific research drive one another to reach optimum operation conditions, which are very close to the ideal conditions; however, further development is still required to meet the stringent environmental regulations. The present article provides a comprehensive review of recent research and development which were carried out in modern blast furnace to increase the productivity meanwhile reduce the energy consumption and CO2 emission to meet the demand of steel market and the environmental protection. The recent technological and metallurgical improvements in the BF are intensively discussed including: (i) modifications of BF design, top charging and measuring system, (ii) upgrading of conventional top charging burden and alternative agglomerates, (iii) developing of tuyeres injection system and injected materials, and (iv) potentials of waste heat recovery and usage. These topics are reviewed and discussed in some details to elucidate the potential of recent progress in BF technology in saving the energy consumption and lowering CO2 emission. In this paper, the major research and development which have been carried out in ironmaking BF technology are reviewed with an overview of the future prospects.

Publisher

Association of Metallurgical Engineers of Serbia

Subject

Metals and Alloys,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3