Aluminothermic production of titanium alloys (Part 2): Impact of activated rutile on process sustainability

Author:

Hassan-Pour S.,Vonderstein C.,Achimovičová M.,Vogt V.,Gock E.,Friedrich B.

Abstract

The aluminothermic process provides a cost-reduced production method for titanium and titanium alloys by reduction of TiO2 with subsequent refining by electroslag remelting The aluminothermy involves high heating rates, high temperatures and short reactions times combined with a self-propagating behaviour of the reaction. By co-reduction of TiO2 and oxides of alloying elements such as vanadium pentoxide, direct synthesis of a titanium alloy is possible. The use of rutile ore concentrates causes a further reduction of process steps. In order to charge rutile ore complex thermodynamic calculations are required taking enthalpy input of various bycomponents into account. The aluminothermic reduction is conventionally enhanced by a highly heatproviding reaction based on the reduction of KClO4. In order to minimize the use of chlorine-based products extensive studies are made to investigate the feasibility of using mechanically activated rutile as input material for the aluminothermic process. Due to the mechanical activation the intrinsic enthalpy of the reaction is increased thus facilitates a process with reduced amount of KClO4. A major challenge represents the determination of a compromise between low activation duration and reduced KClO4 amount. In order to define the process window parameters like intrinsic chemical energy (enthalpy of the reaction mixture), equilibrium temperature and physical properties (particle size and mixing degree) were optimized. After adjusting the process parameters it is possible to save up to 42 % KClO4 for the ATR reaction with 2h activated input material. This reduction of KClO4 material affects a decrease of the produced gaseous compounds and the subsequent off-gas cleaning system.

Publisher

Association of Metallurgical Engineers of Serbia

Subject

Metals and Alloys,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3