Abstract
In this study, theoretical calculations were performed to determine the most efficient utilization of nanoclays added as reinforcement for CFRP composite materials used for wind turbine blade manufacture. Four different V39 blade models were created, and numerical simulations by FEA were performed. Glass Fibre Reinforced Polymers (GFRP), whole model made of Carbon Fibre Reinforced Polymers/nanoclay (2%) (CFRPN2), Hybrid Glass and Carbon/nanoclay (2%) (HGCN2) and Hybrid Glass and Carbon/nanoclay (5%) (HGCN5). The targeted part was the joining zone between the root and the blade. The most important finding to emerge from this study is that the modest addition of nanoclay (2%) with carbon fiber reinforced polymer leads to a significant stiffer blade, with a minimal deflection, about 70% lower than GFRP. Furthermore, the HGCN2 model is considered to be safer as it has a lower stress concentration than others (52.84 kN/m2). It can be considered that the probability of failure of the entire root area will be decreased if nanoclay-CFRP hybrid blades are used, yielding higher durability and lower overall costs. These findings contribute to decisions related to materials selection, structural, aerodynamic design and layup schedule choice.
Publisher
Association of Metallurgical Engineers of Serbia
Subject
Metals and Alloys,Mechanical Engineering