Finite element modeling of the effect of welding parameters on solidification cracking of Austenitic Stainless Steel 310

Author:

Ranjbarnodeh Eslam,Anzabi Yashar Gheisar,Sabet Hamed

Abstract

A transient thermo-mechanical model is employed to study the effects of welding parameters on the occurrence of solidification cracking. A finite element program, ANSYS, is employed to solve the thermal and mechanical equations while the different variables such as welding current, speed and sequence are considered in the simulation. The studied geometry was butt joint of two stainless steel plates with the thickness of 2 mm. Then, the samples were welded by TIG method without filler. To verify the numerical results, the model outputs were checked with the experimental observations and good agreement was observed. It was found that the increasing of welding current from 70 A to 100 A resulted in the increase in transverse tensile strain from 1.2 to 2.1 which can facilitate the occurrence of solidification cracking. Furthermore, the application of symmetric welding layout is an effective method to prevent solidification cracking.

Publisher

Association of Metallurgical Engineers of Serbia

Subject

Metals and Alloys,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3