Bridging Modalities: A Survey of Cross-Modal Image-Text Retrieval

Author:

Li Tieying1ORCID,Kong Lingdu1ORCID,Yang Xiaochun1ORCID,Wang Bin1ORCID,Xu Jiaxing2ORCID

Affiliation:

1. School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China

2. School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

The rapid advancement of Internet technology, driven by social media and e-commerce platforms, has facilitated the generation and sharing of multimodal data, leading to increased interest in efficient cross-modal retrieval systems. Cross-modal image-text retrieval, encompassing tasks such as image query text (IqT) retrieval and text query image (TqI) retrieval, plays a crucial role in semantic searches across modalities. This paper presents a comprehensive survey of cross-modal image-text retrieval, addressing the limitations of previous studies that focused on single perspectives such as subspace learning or deep learning models. We categorize existing models into single-tower, dual-tower, real-value representation, and binary representation models based on their structure and feature representation. Additionally, we explore the impact of multimodal Large Language Models (MLLMs) on cross-modal retrieval. Our study also provides a detailed overview of common datasets, evaluation metrics, and performance comparisons of representative methods. Finally, we identify current challenges and propose future research directions to advance the field of cross-modal image-text retrieval.

Funder

National Natural Science Foundation of China

Publisher

Institute of Emerging and Computer Engineers Inc

Reference39 articles.

1. Li, J., Li, D., Savarese, S., & Hoi, S. (2023, July). Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In International conference on machine learning (pp. 19730-19742). PMLR.

2. Zhang, P., Wang, X. D. B., Cao, Y., Xu, C., Ouyang, L., Zhao, Z., ... & Wang, J. (2023). Internlm-xcomposer: A vision-language large model for advanced text-image comprehension and composition. arXiv preprint arXiv:2309.15112.

3. Zhu, H., Huang, J. H., Rudinac, S., & Kanoulas, E. (2024). Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models. arXiv preprint arXiv:2404.18746.

4. Li, Y., Wang, W., Qu, L., Nie, L., Li, W., & Chua, T. S. (2024). Generative Cross-Modal Retrieval: Memorizing Images in Multimodal Language Models for Retrieval and Beyond. arXiv preprint arXiv:2402.10805.

5. Levy, M., Ben-Ari, R., Darshan, N., & Lischinski, D. (2024). Chatting makes perfect: Chat-based image retrieval. Advances in Neural Information Processing Systems, 36.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3