Enhancing Robotic Grasp Detection with a Novel Two-Stage Approach: From Conceptualization to Implementation

Author:

Chu Zhe1ORCID,Hung Mengkai2ORCID,Chen Xiangyu3ORCID

Affiliation:

1. School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China

2. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

3. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China

Abstract

This study introduces a novel two-stage approach for robotic grasp detection, addressing the challenges faced by end-to-end deep learning methodologies, particularly those based on convolutional neural networks (CNNs) that require extensive and often impractical datasets. Our method first leverages a particle swarm optimizer (PSO) as a candidate estimator, followed by CNN-based verification to identify the most probable grasp points. This approach represents a significant advancement in the field, achieving an impressive accuracy of 92.8% on the Cornell Grasp Dataset. This positions it among the leading methods while maintaining real-time operational capability. Furthermore, with minor modifications, our technique can predict multiple grasp points per object, offering diverse grasping strategies. This adaptability and high performance suggest substantial potential for practical applications in robotic systems, enhancing their efficiency and reliability in dynamic environments.

Publisher

Institute of Emerging and Computer Engineers Inc

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3