Recent Progress in Printing Conductive Materials for Stretchable Electronics

Author:

Jung Hyunsuk,Lee Wonbeom,Kang Jiheong

Abstract

Printed electronics received a great attention in both research and commercialization since it allows fabrication of low-cost, large area electronic devices on various substrates. Printed electronics plays a critical role in facilitating stretchable electronics since it allows patterning newly developed stretchable conductors which is difficult to be achieved with conventional silicon-based microfabrication technologies, such as photolithography and vacuum-based techniques. To realize printed electronics which is necessary for the development of stretchable electronics, printing technologies, formulation of conductive inks, and integration of functional devices have been widely investigated in the recent years. This review summarizes principles and recent development of printing techniques, materials for stretchable conductors and their applications in stretchable electronics using various printing techniques. The challenge is that only a few researches satisfying both excellent materials properties and good printability were reported. Future efforts will greatly expand the possibilities of using printed electronics for stretchable electronics.

Publisher

Korea Flexible & Printed Electronics Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3